

EXIST: Surveying the Obscured & Extreme Universe

Presentation to SEUS/Roadmap Committees

Josh Grindlay Harvard

(on behalf of the EXIST Science Working Group)

December 3, 2001

Energetic X-ray Imaging Survey Telescope (EXIST)

Primary Mission Science Goals:

- •Obscured AGN and accretion history of universe
- •GRBs out to $z \sim 20-30$ (~20X BATSE; ~5X Swift sensitivity)

EXIST measures Cen-A every orbit: accretion effficiency and BH spin?

Mission parameters:

- •Extend ROSAT sens. (~0.05mCrab) to >100 keV
- •All-sky imaging (5' resolution; ~5-50" position) every 95min

http:EXIST.gsfc.nasa.gov

EXIST Overview

Mission Parameters (low -- high energy)

Energy range (resolution): 10-100 (1) keV; 100 - 600 (3) keV

FOV & angular resolution: 180° x 75°; 5'

central-field for pointing: 5° x 5°; 50° x 40°

Sensitivity (5 σ): 2mCrab --> 20mCrab/orbit

Temporal resolution: 1µsec --> ~30min; 95min -->1 year

Telescopes/detectors: coded aperture/8m_ CZT (1.2mm pix)

EXIST Survey Exposure & Sensitivities

Exposure uniformity (galactic coords.) each day (increased exp. at orbital poles)

Continuum and line sensitivities (3σ) (~6-12mo. Survey; dep. on orb. lat.)

Comparison with other Surveys

EXIST will extend **ROSAT** (soft x-ray) and complement **GLAST** (γ-ray) all sky imaging surveys:

(~6-12 month EXIST Survey sensitivity)

GRB Mission Timelines

CGRO

Beppo SAX

HETE - II

Swift

GLAST

Observatory Timelines

Science Overview (Extragalactic)

First all-sky (every orbit) imaging and variability hard x-ray survey

- Gamma-ray Bursts at the limit: Star Formation Rate to z~30(?!)
 - Highest spectral/temporal resolution images of GRBs (and SGRs)
- Survey Black Holes on All Scales; Hard X-ray Background
 - Obscured AGN: Accretion History of the Universe

Hard x-ray (HX) spectra (BeppoSAX) of heavily absorbed Seyfert 2 galaxies obscured by dust: hard x-rays penetrate the veil.

- Spectra of Seyfert II's and Type II QSOs: Contribution to HX Background
- Diffuse IR Background
 - HX spectra of Blazars simultaneous with GLAST/VERITAS

Science Overview (Galactic)

- Accretion onto Black Holes vs. Neutron Stars
 - Spectra and variability (QPOs): M/R & spin of BHs vs. NSs (Pointed observations (5° FOV) have >30X statistics of RXTE at >20keV)
 - Survey for persistent HX sources in GMCs: ~10-100 Msun BHs or VMOs?
 - Survey for transients: neutron star vs. BH content of Galaxy; Local Group(!)
- Magnetic Fields of Neutron Stars
 - Cyclotron lines in LMXBs vs. HMXBs: magnetic field decay?
 - Soft Gamma Ray Repeaters (SGRs): SGRs in Local Group (to Virgo!)
- Supernova and Nova Rates in Galaxy: Stellar Death Rates
 - First map of entire Galaxy in 68,78 keV lines of ⁴⁴Ti: *hidden SNR*
 - All sky monitoring/imaging of 478,511 keV fast (~8h) line transients: *nova rate*

Key EXIST science: Obscured AGN

ASCA and **BeppoSAX** find highly absorbed Seyfert 2's and likely dominant contribution of absorbed AGN to cosmic x-ray background:

and Chandra deep surveys find blank field and optically-dull AGN

EXIST will find >1-10 obscured AGN/square degree and obtain first all-sky measure of Seyfert 2 --> QSO 2 luminosity function

Obscured BHs: Lacc, Galaxies, and BH Spin

Obscured AGN and HX background:

Lacc > 0.1Lstars since >85% of XRB from obscured AGN and

observed $M_{BH} \propto V^4$ is predicted (Fabian et al)

obscured BHs drive galaxy formation

 $\mathcal{E}_{acc} > 0.15$ from local (HST) mass density of BHs

Kerr BHs (spin)? Constrain from dL/dt

XRBmax ~30keV z < 2 for most XRB (Compton-thick Syll)

EXIST all-sky survey needed for Compton-thick AGN to measure distributions in z, NH,dL/dt

EXIST

Next Generation GRB Observatory

GRBs have peak flux at ~100-300 keV but extend to >>500 keV.

- High time resolution spectra constrain source models & beaming
- Broad band spectral lags can constrain z ("photometric" redshifts):

EXIST will measure faintest GRBs over broadest spectral-temporal range (2-3 GRBs/day; 5-50" positions) as primary component & *trigger* of a

Next Generation GRB Observatory

EXIST

GRBs as Probe of Pop III and SFR at z~5-50

"Long"-GRBs are likely from collapsars (BH formation)

EXIST could detect bright GRBs to z~50 and BATSE -threshold GRBs to z~5.

Response to E>100keV needed even for z~10!

Comparison of EXIST vs. Swift

Parameter	EXIST	Swift/BAT
Energy range	10-600 keV	15-150 keV
FOV (instantaneous)	5sr (180° x 75°)	2sr
CZT area (thickness)	8m_ (10mm)	0.5m_ (2mm)
GRB sensitivity	~20X BATSE	~5X BATSE
Full sky imaging	each orbit (95min)	~1month(?)
Angular res./loc.	5'/<10-50"	22'/<4'

Key Science: Blazars and Cosmic Diffuse IR

and monitoring of all AGN classes, including Blazars. Hard x-ray (synchrotron) spectral breaks (~10-200keV) allow gamma-ray (~10 GeV - 10 TeV) spectral breaks measured by GLAST and VERITAS to constrain origin of diffuse IR background for Blazars at known redshift (gamma-rays pair-produce on the IR background photons).

Time-variable instrinsic spectral breaks required from HX measurements.

SSC model for Mkn 501 (Coppi & Aharonian 99)

EXIST will provide the continuous HX spectral-monitoring to study Blazars and non-thermal AGN as well as enable constraints on diffuse IR (~10-100_) background from obscured AGN

EXIST

EXIST Requirements

Science Requirements

- High sensitivity: extend ROSAT/ABRIXAS survey (~0.05mCrab sens.) to HX band
- Moderate imaging resolution (5'): resolve AGN & centroid positions to ~5"-1"
- Broad energy band: from Compton bump (10keV) to positron annihilation (511keV)
- Moderately high spectral resolution: resolve 68,78 keV Ti lines; cyclotron line shapes

Instrument Requirements

- Very large area, FOV and exposure coverage
- Coded aperture imaging over broad band
- Telescope aspect (~5"); zenith or inertial pointing

Implementation

- ~8m_ imaging Cd-Zn-Te (CZT) detector array (10 600 keV)
- 180° x 75° instantaneous FOV from 3 telescopes (60° x 75°)
- zenith (and/or inertial) pointing, scanning entire sky each orbit

EXIST Mission Concept

Free-Flyer (500km, i \sim 20°):

- Zenith pointer (Survey mode)
- •3-axis pointer (Observatory and survey)
- •3 coded aperture telescopes (60° x 75° each)
 - → 180° x 75° fan-beam: all sky/orbit

Mission Parameters:

•CZT tiled arrays: 8m_ total area

•Passive and active shielding; 25° x 20° collimation/module

•Mass, power, telemetry: 8500kg, 1200W, 1.2mbs (X-band)

•Delta-IV launch

scan direction
(orbit veloc. vector)

EXIST Telescope & Mission Design

Detector-collimator & Telescope views (3 Telescopes + S/C: Ht x Diam ~8.6m x 4.7m)

EXIST in Delta-IV shroud

EXIST Sky Coverage

FOV and survey coverage (shown for Observatory pointing mode: target at orbital pole)

EXIST

EXIST Technology

Imaging and detector technology development

- •Coded aperture hard x-ray imaging
 - -Developed on SR&T/balloon payloads
 - -Demonstrated in space on SIGMA/GRANAT
- •Cd-Zn-Te (CZT) detectors
 - -Backgrounds measured & CZT imagers for balloons
 - -Large-area (0.5m_) CZT array to be flown on Swift (2003)
 - -Medical x-ray imaging lowering CZT imager costs

EXITE coded aperture telescope (20-600 keV) in balloon gondola

•CZT imagers for 10-600 keV: 64cm_ module, partial image & Ba-133 spectra (lines at 276, 302, 356, 383keV)

EXIST Technology Roadmap

	Completion
• GSFC Mission Studies	
 Instrument Studies Analysis Lab (ISAL) 	2000
 Integrated Mission Design Center (IMDC) 	2001
 ASIC prototypes 	
- Low noise (~1keV) and power (0.1mW/ch) for CZT array	2001
- Depth-sensing & multi-pixel readout incorporated	2002
• CZT Detector module (HE and LE) development	
- Basic CZT imager technology near ready to fl y	2002
- CZT pixel-ASIC bonding and packaging	2003
- TRL4 TRL6 for CZT-ASIC-digital module	2004
 Large area detector and shield prototype 	
- Balloon flight test of complete EXIST detector module	2005

EXIST Heritage and Support

•Mission concept heritage

- -Selected as New Mission Concept (1994)
- -GRAPWG Priority mission (1999)
- -Formed Science Working Group (EXSWG) (1999)
- -Identified Project Scientist & Project Formulation Manager (1999)
- -Recommended in NRC Decadal Survey as Medium Mission (2000)
- -GSFC/ISAL study of instrument concept for ISS (2000)
- -GSFC/IMDC study for Free Flyer (2001)

Current support for EXIST

- Partial CZT development support (∼\$300K) under balloon-program SR&T grants
- Limited funding (\$70K) for initial GSFC/ISAL studies (2000, 2001)

•Support needed for technology development/mission formulation

- -CZT ASIC design optimization (for depth-sense sparse readout): ~\$1.5M
- -Development of low-cost, high yield CZT-ASIC contacts: ~\$1M
- -Development of shield design & detector-shield packaging:~\$1M

•Estimated cost for EXIST mission (Free-Flyer) development & Ops

-Total mission and ops (incl. GO prog.) cost ~\$350M (FY02\$)

EXIST Schedule

EXIST could launch by 2010 and support GLAST, Con-X, NGST, LSST

EXIST Science Working Group (EXSWG)

EXSWG established with NASA concurrence in January, 2000

Josh Grindlay (CfA/Harvard; Chair)

Lars Bildsten (ITP/UCSB)

Roger Blandford (Caltech)

Deepto Chakrabarty (MIT)

Andy Fabian (IOA, Cambridge, UK)

Fabrizio Fiore (Rome Obs./BeppoSAX, IT)

Jerry Fishman (MSFC)

Martin Elvis (CfA/SAO)

Neil Gehrels (GSFC; Study Scientist)

Chuck Hailey (Columbia Univ.)

Fiona Harrison (Caltech)

Dieter Hartmann (Clemson Univ.)

Chryssa Kouveliotou (MSFC)

Tom Prince (Caltech)

Brian Ramsey (MSFC)

Rick Rothschild (UCSD)

Gerry Skinner (CESR/Toulouse, FR)

Stan Woosley, (UC Santa Cruz)

Project office (GSFC) established:

Ruth Carter, Study Manager

EXSWG and Discipline Teams to be expanded

EXIST Mission Collaboration(s)

Discussions ongoing with interested International Partners (possible mission hardware support):

- Italy (Bologna, Rome; also ground station support)
- Germany (MPE, Univ. Tubingen)
- UK (Leicester, Southampton)
- Netherlands

EXIST Summary

- •EXIST conducts high priority science
 - -Highest sensitivity full-sky probe of obscured universe
 - -Ultimate sensitivity broad-band, high resolution study of GRBs
 - -Decadal Survey high ranking shows broad astrophysics interest
- •Science highly complementary to other OSS and ground-based missions
 - -Finds most luminous obscured AGN for study by Con-X, NGST
 - -Hard x-ray all sky imaging/monitoring complements GLAST, LSST
- •Technology connects to OSS missions and industry
 - -CZT large area detectors developed for Swift and medical imaging
 - -Extension to very large area using new techniques from GLAST & industry
- •Mission accommodates launch/operations for Free Flyer or ISS
 - -Large area/mass telescope with zenith scan and target pointing (EXIST-FF)

EXIST-ISS Concept (Backup)

- 80° x 80° coded aperture telescopes (2) fixed on ISS Truss site(s)
- Detector plane is tiled CZT array; Csl collimation/shielding

One of 2 EXIST telescopes: 2 x 2 array of 40° telescopes for combined FOV of 160° x 80°. CZT detector array and CsI shields/collimator shown.

Mount on ISS Truss (P3 or P3 + S3-inboard) with 160° FOV along Truss and most-sky each orbit

Full EXIST payload in launch (STS) configuration.

